
Kwapi Documentation
Release

OpenStack, LLC

May 29, 2014

Contents

1 What is the purpose of the project and vision for it? 3

2 Table of contents 5
2.1 Installing . 5
2.2 System Architecture . 5
2.3 Configuration Options . 10
2.4 Contributing to Kwapi . 12
2.5 Glossary . 14

3 Indices and tables 15

i

ii

Kwapi Documentation, Release

Kwapi is a framework designed for acquiring energy consumption metrics. It allows to upload metrics from various
wattmeters to Ceilometer.

Its architecture is based on a layer of drivers, which retrieve measurements from wattmeters, and a layer of plugins
that collect and process them. The communication between these two layers goes through a bus. In the case of a
distributed architecture, a plugin can listen to several drivers at remote locations.

Drivers and plugins are easily extensible to support other types of wattmeters, and provide other services.

Contents 1

Kwapi Documentation, Release

2 Contents

CHAPTER 1

What is the purpose of the project and vision for it?

Kwapi could be used to do:

• Energy monitoring of data centers

• Usage-based billing

• Efficient scheduling

It aims at supporting various wattmeters, being scalable and easily extensible.

This documentation offers information on how Kwapi works and how to contribute to the project.

3

Kwapi Documentation, Release

4 Chapter 1. What is the purpose of the project and vision for it?

CHAPTER 2

Table of contents

2.1 Installing

2.1.1 Installing Kwapi

1. Clone the Kwapi git repository to the management server:

$ git clone https://github.com/stackforge/kwapi.git

2. As a user with root permissions or sudo privileges, run the Kwapi installer and copy the configuration files:

$ pip install kwapi
$ cp -r kwapi/etc/kwapi /etc/

2.1.2 Running Kwapi services

Start the drivers on all the machines that can access wattmeters:

$ kwapi-drivers

Start the forwarder on a remote machine (optional):

$ kwapi-forwarder

Start the API plugin if you want to use Ceilometer:

$ kwapi-api

Start the RRD plugin if you want to display graphs in a web browser:

$ kwapi-rrd

2.2 System Architecture

Overview of the global layered architecture:

5

Kwapi Documentation, Release

2.2.1 Kwapi drivers

Kwapi supports different kinds of wattmeters (IPMI, Eaton PDU, Wattsup, etc). Wattmeters communicate via IP
networks or serial links. Each wattmeter has one or more sensors (probes). Wattmeters send their values quite often
(each second), and they are listen by wattmeter drivers. Wattmeter drivers are derived from a Driver superclass, itself
derived from Thread. So drivers are threads. At least one driver thread is instantiated for each wattmeter. Their
constructors takes as arguments a list of probe IDs, and kwargs (specific arguments).

Driver threads roles are:

1. Setting up wattmeter.

2. Listening and decoding received data.

3. Calling a driver superclass method with measurements as argument. This method appends signature to the
measurements, and publishes them on the bus.

Message format:

6 Chapter 2. Table of contents

Kwapi Documentation, Release

Driver manager

The driver manager is the loader and the checker of driver threads. It loads all drivers according the configuration file,
and checks regularly that driver threads are alive. In case of crash, the event is logged and the driver thread is reloaded.
We can imagine that a driver will crash if a technician unplug a wattmeter, for example.

Bus

Currently, the internal Kwapi bus is ZeroMQ. Publishers are driver threads, and subscribers are plugins.

2.2.2 Kwapi plugins

Kwapi API plugin

API plugin allows Ceilometer pollster to get consumption data through a REST API. This plugin contains a collector
that computes kWh, and an API based on Flask.

Collector

The collector stores these values for each probe:

Fields:

• Probe id: could be the hostname of the monitored machine. But it is a bit more complicated because a
probe can monitor several machines (PDU).

• Timestamp: is updated when a new value is received.

• KWh: is computed by taking into account the new watt value, and the elapsed time since the previous
update. It allows Ceilometer to compute average consumption for a given duration (knowing the kWh
consumed and the time elapsed since its last check).

• Watts: offers the possibility to know instantaneous consumption of a device, without having to query two
times a probe in a small interval to deduce it. This could be especially useful if a probe has a large refresh
interval: there is no need to wait its next value.

No history is kept because Ceilometer already has a storage architecture. The collector is cleaned periodically to
prevent a deleted probe from being stored indefinitely in the collector. So when a probe has not been updated for a
long time, it is deleted.

2.2. System Architecture 7

Kwapi Documentation, Release

API

Verb URL Parameters Expected result
GET /v1/ Returns detailed information about this specific

version of the API.
GET /v1/probe-ids/ Returns all known probe IDs.
GET /v1/probes/ Returns all information about all known probes.
GET /v1/probes/<probe>/ probe id Returns all information about this probe (id,

timestamp, kWh, W).
GET /v1/probes/<probe>/<meter>/probe id, meter { timestamp,

kwh, w }
Returns the probe meter value.

Authentication

The pollster provides a token (X-Auth-Token). The API plugin checks the token (Keystone request), and if the token
is valid, requested data are sent. Responses are not signed because Ceilometer trusts Kwapi plugin.

Ceilometer pollster

The API plugin is queried by a Ceilometer pollster. The Ceilometer pollster is started periodically by Ceilometer
central agent. It knows the Kwapi URL by doing a Keystone request (endpoint-get). It queries probe values through
Kwapi API, using the GET /v1/probes/ call, so that it gets all detailed informations about all probes in just one query.
For each probe, it creates a counter object and publishes it on the Ceilometer bus.

Published counters:

• Energy (cumulative type): represents kWh.

• Power (gauge type): represents watts.

Counter timestamps are Kwapi timestamps, so that Ceilometer doesn’t store wrong data if a probe is not updated.
Ceilometer handles correctly the case where a probe value is reset (kWh decrease), because of its cumulative type.

Kwapi RRD plugin

Web interface

The visualization plugin provides a web interface with power consumption graphs. It is based on Flask and RRDtool.

Verb URL Parameters Expected result
GET /last/<period>/ period { minute, hour, day, week,

month, year }
Returns a webpage with a summary graph
and all probe graphs.

GET /probe/<probe>/ probe id Returns a webpage with all graphs about
this probe (all periods).

GET /graph/<period>/ period { minute, hour, day, week,
month, year }

Returns a summary graph about this period.

GET /graph/<period>/<probe>/period { minute, hour, day, week,
month, year }, probe id

Returns a graph about this probe.

Webpage with a summary graph and all probe graphs:

8 Chapter 2. Table of contents

Kwapi Documentation, Release

In the menu bar, you can choose the period for which you want to display graphs (last minutes, hour, day, week, month
or year). By clicking on a probe, you can display all graphs available for this probe, with different resolutions.

Graphs

The summary graph shows the total power consumption (sum of all the probes). Each colour corresponds to a probe.

The legend contains:

• Minimum, maximum, average and last power consumption.

• Energy consumed (kWh).

• Cost.

File sizes:

• RRD file: 10 Ko.

• Probe graph: 12 Ko.

• Summary graph: 24 Ko.

A cache mechanism prevents graphs from being rebuilt uselessly.

2.2.3 Kwapi forwarder

The forwarder aims at decreasing the network traffic: if multiple plugins listen the same probe, the metric is sent once
on the network, and the forwarder duplicate it and sends a copy to each listeners. The forwarder can also be installed

2.2. System Architecture 9

Kwapi Documentation, Release

on a gateway machine, in order to connect isolated networks.

The following diagram shows these two features:

Using the forwarder is optional, and the plugins can be configured to subscribe directly to the drivers. Direct subscrib-
ing without using the forwarder is recommanded if the drivers and the plugins are running on the same machine.

2.3 Configuration Options

2.3.1 Kwapi drivers specific

The following table lists the Kwapi drivers specific options in the drivers configuration file. Please note that Kwapi
uses openstack-common extensively, which requires that the other parameters are set appropriately. For information
we are listing the configuration elements that we use after the Kwapi drivers specific elements.

Parameter Default Note
probes_endpoint ipc:///tmp/kwapi-

drivers
Endpoint where the drivers send their measurements ipc://<file> or
tcp://<host>:<port>

enable_signing true Enable message signing between drivers and plugins
metering_secret change this or be

hacked
Secret value for signing metering messages

check_drivers_interval60 Check drivers at the specified interval and restart them if they are
crashed

The configuration file contains a section for each wattmeter.

A sample configuration file can be found in drivers.conf.

2.3.2 Kwapi plugin API specific

The following table lists the Kwapi API specific options in the API configuration file. Please note that Kwapi uses
openstack-common extensively, which requires that the other parameters are set appropriately. For information we are
listing the configuration elements that we use after the Kwapi API specific elements.

10 Chapter 2. Table of contents

https://github.com/stackforge/kwapi/blob/master/etc/kwapi/drivers.conf

Kwapi Documentation, Release

Parameter Default Note
api_port 5000 API port
probes_endpoint ipc:///tmp/kwapi-

forwarder
Endpoint where the measurements are received

signature_checking true Enable the verification of signed metering messages
driver_metering_secretchange this or be

hacked
Secret value for verifying signed metering messages

acl_enabled true Check the Keystone tokens provided by the clients
policy_file /etc/kwapi/policy.json Policy file
cleaning_interval 300 Delete the probes that have not been updated during the

specified interval

A sample configuration file can be found in api.conf.

Keystone Middleware Authentication

The following table lists the Keystone middleware authentication options which are used to get admin token. Please
note that these options need to be under [keystone_authtoken] section.

Parame-
ter

Default Note

auth_host The host providing the Keystone service API endpoint for validating and
requesting tokens

auth_port 35357 The port used to validate tokens
auth_protocolhttps The protocol used to validate tokens
auth_uri auth_protocol://auth_host:auth_portThe full URI used to validate tokens
ad-
min_token

Either this or the following three options are required. If set, this is a single
shared secret with the Keystone configuration used to validate tokens.

ad-
min_user

User name for retrieving admin token

ad-
min_password

Password for retrieving admin token

ad-
min_tenant_name

Tenant name for retrieving admin token

sign-
ing_dir

The cache directory for signing certificate

certfile Required if Keystone server requires client cert
keyfile Required if Keystone server requires client cert. This can be the same as

certfile if the certfile includes the private key.

2.3.3 Kwapi plugin RRD specific

The following table lists the Kwapi RRD specific options in the RRD configuration file. Please note that Kwapi uses
openstack-common extensively, which requires that the other parameters are set appropriately. For information we are
listing the configuration elements that we use after the Kwapi RRD specific elements.

2.3. Configuration Options 11

https://github.com/stackforge/kwapi/blob/master/etc/kwapi/api.conf

Kwapi Documentation, Release

Parameter Default Note
rrd_port 8080 Port used to display webpages
probes_endpoint ipc:///tmp/kwapi-forwarder Endpoint where the measurements are received
signature_checking true Enable the verification of signed metering messages
driver_metering_secret change this or be hacked Secret value for verifying signed metering messages
png_dir /var/lib/kwapi/kwapi-png The directory where are stored PNG files
rrd_dir /var/lib/kwapi/kwapi-rrd The directory where are stored RRD files
currency C The currency symbol used in graphs
kwh_price 0.125 The kWh price used in graphs
hue 100 The hue of the graphs
max_watts 200 The maximum value of the summary graph
refresh_interval 5 The webpage auto-refresh interval

A sample configuration file can be found in rrd.conf.

2.3.4 General options

The following is the list of openstack-common options that we use:

Parameter Default Note
log_file Log output to a named file
verbose true Print more verbose output

2.3.5 Kwapi forwarder specific

The following table lists the Kwapi forwarder specific options in the forwarder configuration file. Please note that
Kwapi uses openstack-common extensively, which requires that the other parameters are set appropriately. For infor-
mation we are listing the configuration elements that we use after the Kwapi forwarder specific elements.

Parameter Default Note
for-
warder_endpoint

ipc:///tmp/kwapi-
forwarder

Endpoint where the measurements are forwarded and where the plugins
subscriptions are received

probes_endpoint ipc:///tmp/kwapi-
drivers

Endpoint where the drivers send their measurements. ipc://<file> or
tcp://<host>:<port>

The configuration file contains a section for each wattmeter.

A sample configuration file can be found in forwarder.conf.

2.4 Contributing to Kwapi

2.4.1 Joining the Project

Contributor License Agreement

In order to contribute to the Kwapi project, you need to have signed OpenStack’s contributor’s agreement.

See also:

• http://wiki.openstack.org/HowToContribute

• http://wiki.openstack.org/CLA

12 Chapter 2. Table of contents

https://github.com/stackforge/kwapi/blob/master/etc/kwapi/rrd.conf
https://github.com/stackforge/kwapi/blob/master/etc/kwapi/forwarder.conf
http://wiki.openstack.org/HowToContribute
http://wiki.openstack.org/CLA

Kwapi Documentation, Release

LaunchPad Project

Most of the tools used for OpenStack depend on a launchpad.net ID for authentication. After signing up for a launch-
pad account, join the “openstack” team to have access to the mailing list and receive notifications of important events.

See also:

• http://launchpad.net

• http://launchpad.net/kwapi

• http://launchpad.net/~openstack

2.4.2 Project Hosting Details

Bug tracker https://bugs.launchpad.net/kwapi

Mailing list http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev (prefix subjects with
[energy] for faster responses)

Code Hosting https://github.com/stackforge/kwapi

Code Review https://review.openstack.org/#/q/status:open+project:stackforge/kwapi,n,z

See also:

• Joining the Project

2.4.3 Areas to Contribute

Drivers

Kwapi aims at supporting various wattmeters. If you have a non-supported wattmeter, you can easily contribute by
writing a new one.

Plugins

Kwapi plugins process the metrics. You can contribute by writing new plugins to bring new functionnalities.

Testing

The first version of Kwapi has not yet unit tests and has not seen much run-time in real environments. Setting up a
copy of Kwapi to monitor a real OpenStack installation or to perform some load testing would be especially helpful.

2.4.4 Working with the Source

Setting up a Development Sandbox

1. Set up a server or virtual machine to run OpenStack using devstack.

2. Clone the kwapi project to the machine:

$ cd /opt/stack
$ git clone https://github.com/stackforge/kwapi.git
$ cd ./kwapi

2.4. Contributing to Kwapi 13

http://launchpad.net
http://launchpad.net/kwapi
http://launchpad.net/~openstack
https://bugs.launchpad.net/kwapi
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://github.com/stackforge/kwapi
https://review.openstack.org/#/q/status:open+project:stackforge/kwapi,n,z
http://www.devstack.org/

Kwapi Documentation, Release

3. Once this is done, you need to setup the review process:

$ git remote add gerrit ssh://<username>@review.openstack.org:29418/stackforge/kwapi.git

4. If you are preparing a patch, create a topic branch and switch to it before making any changes:

$ git checkout -b TOPIC-BRANCH

Code Reviews

Kwapi uses the OpenStack review process for all code and developer documentation contributions. Code reviews are
managed through gerrit.

See also:

• http://wiki.openstack.org/GerritWorkflow

• OpenStack Gerrit instance.

2.5 Glossary

driver Software thread running querying a wattmeter and sending the results to the plugins.

forwarder Component that forwards plugins subscriptions and metrics. Used to minimize the network traffic, or to
connect isolated networks through a gateway.

plugin An action triggered whenever a meter reaches a certain threshold.

probe A wattmeter sensor. A wattmeter can have only one probe (usually the IPMI cards), or multiple probes (usually
the PDUs).

14 Chapter 2. Table of contents

http://wiki.openstack.org/GerritWorkflow
https://review.openstack.org/#/q/status:open+project:openstack/kwapi,n,z

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

	What is the purpose of the project and vision for it?
	Table of contents
	Installing
	System Architecture
	Configuration Options
	Contributing to Kwapi
	Glossary

	Indices and tables

